9.3 Quadratic ReciprocityNote Title 7/17/2006 1. Evaluate The following Legendre symbols: (a) (71/73) $71\equiv -1(mod4), 73\equiv 1(mod4), \therefore (71/73) = (73/71)$ $(73/71) = (71+2/71) = (2/71)$ $71 = 7 + 8(9) = 7 71 = 7(mod8), 50 (2/71) = 1$ $2. (71/73) = 1$ (6) (-219/383) $219 = 3.73$ 383 = 3(mod4) \therefore (-219/383) = (1/383)(3/383)(73/383) $= (-1) (- (383/3) (383/23)$ = $(2/3)(15/73)$ $= (-1) (2.8²/73) = -(2/73)$ z -/ as 73 = 1 (mod 4) $(-219/383) = -1$

 (c) (461/773) $461 \equiv (mod 4)$ $\frac{1}{2} \cdot \frac{(461/773) = (778/461)}{2(312/461)} = (2^{3} \cdot 3 \cdot 13/461)$ = (2.3. 13/461)
= (2/461) (3/461) (13/461)
= (-1) (461/3) (461/13)
= (-1) (2/3) (6/13) = (-1)(-1) (z/13) (3/13)
=(-1) (3/13) = (-1)(13/3) as 13 =1 (mod 4) $= (-1) (1/3)$ $\frac{z}{\sqrt{2}}$ $\frac{1}{16}(461/773) = -1$ (d) (1234/4567) (234 = 2.617 $4567 = 3 (mod 4) 617 = 1 (mod 4)$ $\frac{1}{2}$ (1234/4567) = (2/4567)(617/4567) = $(1)(4567/617)$ as $4567 = 7(m.18)$ = $(248/617)$

= (2³-3 | /6/7) = (2/6/7) (31/6/7)
= (1) (31/6/7) as 6/7 = / (mud 8) = $(617/31) = (28/31)$ $=(47/31)$ = (7/31) $=-(3/(7))$ as $2\equiv 3 \pmod{4}$, $3/33 \pmod{4}$ = - $(3/7)$ = $(7/3)$ = $(1/3)$ >/ $(1234/4567)=$ (e) $(3658 / 12703)$ $3658 = 2 - 31.59$ $12703 \equiv 7(mod8) : (2/12703) = 1$ $\frac{(2/12703)(31/12703)(55/12703)}{2}$ = $(31/12703)(59/12703)$ $(2703=5(mody))$ $31 = 3$ (mod 4) $=(12703/81)(12703/55)$ $55 \equiv 3 \quad (\text{mod } 4)$ = (24/31) (18/59)
= (6/31) (2/59) = - (6/31) as $59 = 3 \pmod{6}$
= - (2/31) (3/31) = - (3/21) as (2/31) = 1 = $(3/3) = (1/3) = 1$ \therefore (3658/12703) = (

2. Prove That 3 is a quadratic nonresidue of all
primes of The form 2²ⁿ +1, and all primes
of The form 2^p -1, where p is an odd prime. $Pf: (1)$ For all $n, 4^{\prime\prime} = 4 (mod (2))$ C *carly true for* $n = 1$ Assume true for n.
Then 4¹⁴¹ = 4¹.4 = 4.4 = 16 = 4 (mod12) $(2) 2^{2n} = 4^{n} = 4 (mod/2)$ $2^{2n}+1 \equiv 5 \pmod{2}$ (3) Let ρ be a prima of form $2^{2n}+1$. $\frac{1}{2}$ (3) $\sqrt{74}.9.10$ and (2) above, $(3/p) = -1$,
and so 3 is a quadratic nonresidue Of prime $2^{2n} + 1!$ (4) If ρ is an odd prime, ρ = 2n+ 1, some n. \therefore 2 -1 = 2 $\frac{2n+1}{1}$ = 4ⁿ - 2 -1 $\begin{array}{c} \mathcal{B}y^{(1)}, & \mathcal{A}^{n-2-1} \equiv 4 \cdot 2 - 1 \pmod{12} \\ & \equiv 7 \pmod{12} \end{array}$ $\frac{1}{2}$, $2^{1}-1 \equiv -5 \pmod{12}$ \therefore By $74.910 (3/(2^{\rho}-1)) = -1$, so
3 is a quadradic nonresidue of prime $2^{\rho}-1$.

3. Determine whether the following quadratic
congruences are solvable: $(4) x² = 219 (mod 419)$ 419 is prima. Consider (219/419)
219 = 3.73 419 = 3 (mud 4), 73 = 1 (mod 4) $2.(2/9/4/9) = (3/419) \cdot (73/419)$ $(3/4/9) = -(4/9/3) = -(2/3) = -(-1) = 1$ $(73/419) = (419/73) = (5.73+54/73)$
= $(54/73) = (2.3³/73) = (2.3/73)$
= $(2/23) \cdot (3/73) = (-2/373)$
= $(73/3) = (1/8) = (1/3)$ $\frac{1}{2}(219/419) = 1$, so solvable (6) 3x²+ 6x + 5 = 0 (mod $89)$ $Li₃$ $gcd(165) = 1, gcd(3,85) = 1.$ \therefore $[1] \Leftrightarrow$ $[2(3x^2+6x+5) \equiv 0 \pmod{56}$ $\leq 36x^{2} + 72x + 60 = 0$ (mod 89)

 \Leftrightarrow $(6x + 6)^{2} + 24 = 0$ (mod 89) \iff (6x+6)² = 65 (mod 89) $Let y = Gr + G$. $E1367 y^2 = G6(89)$ $Consjder (65/85) = (13/85)(5/85)$ $(3 \equiv 1 \pmod{4}, \frac{5 \equiv 1 \pmod{4}, \frac{6}{4} \equiv 1 \pmod{8}}{5 \equiv 1 \pmod{8}}$
 $\therefore (13/85) = (85/13) = (11/13) = (13/11)$
 $=(2/11) = -1$ as $11 = 3 \pmod{8}$ $(S/S9) = (S9/S) = (4/S) = (2^{2}/S) = 1$ $\sqrt{(c^{5}/88)}=-1$ \therefore [1] is not solvable. (c) $2x^{2}+5x-8=0$ (mod 101) $L(s)$ As in (a) Let $y = 2ax + 6$, $d = 6^2 - 4ac$,
So $L13 \Leftrightarrow y^2 = d = 97$ (mod 101) [Consider (91/101). 97 is prime
97 = ((mod 4), 10(=1 (mod 4)

 $2. (97/101) = (101/97) = (4/97) = (2^2/97) =$: [1] is solvable. 4. Verity That if p is an odd prime, Then $(-2/p) =$ { $| i \nvert p = | (mod 8) or p = 3 (mod 8)$
- $| i \nvert p = 5 (mod 8) or p = 7 (mod 8)$ $Pf: (-2/\rho) = (-(\rho)(2/\rho)$ $(-1/\rho) = \begin{cases} 1 & \text{if } \rho = 1 \pmod{4} \\ -1 & \text{if } \rho = 3 \pmod{4} \end{cases}$ Corollary to \mathbb{V}_1 , 9.2 $(2/\rho) = \begin{cases} i^{\frac{1}{2}} & \rho \equiv 1 \pmod{8} \text{ or } \rho \equiv 7 \pmod{8} \\ -1 & \text{if } \rho \equiv 3 \pmod{8} \text{ or } \rho \equiv 5 \pmod{8} \end{cases}$: if $\rho \equiv 1 \pmod{8}$, $\eta_{en} = \rho \equiv (mod 4)$, so
 $(-2/\rho) = (-1/\rho)(2/\rho) = 1 \cdot (-1/\rho)$ $if \rho = 3 (mod 8), then p = 3 (mod 4), so$
 $(-2/\rho) = (-1/\rho)(2/\rho) = -1. -1 = 1.23$ if $\rho \equiv 5 \pmod{8}$, Then $\rho \equiv 5 \pmod{4} \equiv 1 \pmod{4}$.
(-2/p) = (-1/p)(z/p) = 1 -1 = -1 [3]

 $\begin{array}{c} \sqrt{1 + \rho \equiv 7 \pmod{8}}, \ \sqrt{1 + \rho \equiv 7 \pmod{4}} \equiv 3 \pmod{4} \\ \frac{(-2/\rho) \equiv (-1/\rho)(2/\rho) \equiv -1 \cdot 1 \equiv -1 \quad \text{[9]} \end{array}$ $\frac{1}{2}$ (-2/p) = $\begin{cases} 1 & \text{if } p \equiv 1 \pmod{8} \text{ or } p \equiv 3 \pmod{8} \quad \text{[}3\text{ [}2\text{]} \\ -1 & \text{if } p \equiv 5 \pmod{8} \text{ or } p = 7 \pmod{8} \quad \text{[}33\text{ [}24\text{]} \end{cases}$ $S.$ (a) Prove that if $\rho > 3$ is an odd prime, then $\frac{1}{(3/p)} = \begin{cases} 1 & \text{if } p = 1 \pmod{6} \\ -1 & \text{if } p \in 6 \pmod{6} \end{cases}$ $Pf: (-3/\rho) = (-1/\rho) \cdot (3/\rho)$ (1) Suppose $\rho \equiv 1 \pmod{6}$. Then $\rho - 1 = 6k$, some K. (a) If K is even, Then $k=2k'$, so
 $\rho-1 = 12k'$, or $\rho=1 \pmod{12}$
 $\therefore (-1/\rho) = (-1)^{\frac{p-1}{2}} = (-1)^{\frac{12k'}{2}} = (-1)^{k} = 1$
 $(3/\rho) = 1 + 6\gamma$ 7α . 9.10 $\frac{-(3/\rho)}{2} = 1.1 = 1$ (6) If k is odd, Then $k = 2k'+1$, so
 $p^{-1} = 6(2k'+1) = 6 + 12k'$, or

 $\rho \equiv 7 \pmod{2} \Leftrightarrow \rho \equiv -5 \pmod{12}$ $\frac{p-1}{2} = (-1)^{3+6k}$
 $(3/p) = -1$, by $7q$, 9.10 $\frac{1}{2}(-3/\rho)=-1-1=1$ \therefore $\rho \equiv 1 \pmod{6} \Rightarrow (-8/\rho) = 1$ (2) Suppose p=5 (mod 6). Then p-5=6K, some K (a) $Ff k$ is even, $k = 2k'$, some k' , so
 $\rho^{-5} = 12k'$, or $\rho = 5$ (mod 12)
 $F = (-1/\rho) = (-1)^{\frac{\rho-1}{2}} = (-1)^{4+12k'}$
 $F = (3/\rho) = -1, 5\gamma$ $\overline{14}. 9.10$ \therefore (-3/p) = 1.-1 = -1 (6) If k is odd, $k = 2k' + 1$, so
 $p^{-5} = 12k' + 6$, or $p = 11 \pmod{12}$ $\frac{p-1}{2}$ = (-1)

(3/p) = (-1)

(3/p) = (, by \overline{Y}_{1} , 9.10

 \therefore (-3/p) = -|. | = -| $\therefore \rho \equiv 5 \ (mod 6) \Rightarrow (-3/\rho) = -/$ Mote: $\rho \neq 3$ (mod 6), for it so, Then
 $\begin{array}{c} \rho = 3 = k \cdot 3 \cdot 2, \text{ so } 3 / \rho \cdot 3 \rightarrow 3 / \rho \\ \delta$ imilarly for \mathcal{P}_1 . 9.10 (L) Using part (a), show that there are infinitely Pf: Assume There are a finite number of primes
of form GK+1, say, $\rho_1, ..., \rho_r$. Consider $N = (Z_{\beta_1 \beta_2 \cdots \beta_r})^2 + 3$ $\frac{3\times N}{503}$, for it $\frac{3}{N}$, Then $\frac{3}{2}(2\rho_1\cdot\cdot\cdot\rho_r)^2$,
 $\frac{3}{N}$ must be one of ρ_i , but $\frac{3}{3}$ is

not of form $6Kt$. : Pherz must be some odd prime
divisor, p > 3, of M.
And p = p., for if p = p., some i,
Then p |N => p 13, a contradiction.

 $\therefore M \equiv o \pmod{p}$, or equivalently,
(2pp p) = -3 (mod p) $\frac{1}{2}(-3/\rho) =$ $\begin{array}{c} 1.5 \text{ by (a)} \ 1.5 \text{ and } 1.5 \end{array}$ $\begin{array}{c} \rho = 5(\text{mod } 6), \text{ then } (-3/\rho) = -1, \text{ and } \rho \neq 3(\text{mod } 6), \text{ as shown above.} \end{array}$ $\epsilon - \rho$ is of form $Gk+1$, contradicting $\rho \neq \rho$,. ... intinitély many primes of form 6k+1. 6. Use Theorem 9.2 and problems 4 and 5 to determine
which primes can divide integers of The forms
n²+1, n²+2, or n²+3 for some value of n. (a) $p |n^2 + 1 \text{ } \in \supset n^2 = -1$ (mod p) For podd, $(-1/\rho) = (-1)^{\frac{\rho-1}{2}}$ so $(-1/\rho) = (-1)^{\frac{\rho-1}{2}}$ is even $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{50}{2}$ $\frac{2k+1}{2}$ is even, $\frac{2K}{50}$ = k is $\frac{1}{2}$ = k is $\frac{1}{2}$ = 4k' + 1

 $\frac{1}{2}$ for podd, $\rho \equiv 1 \pmod{4}$ if ρ =2, n^2 +/must be even. (6) ρ | n^2 +2 \Leftarrow 7 n^2 = -2 (mod ρ) It n is $\frac{2}{n^{2}+2}$.
It n is odd, $n^{2}+2$ is odd, $2 \text{ n}^{2}+2$ For p edd, $n^2 = -2 (mod p)$ is solvable \Leftrightarrow
(-2/p) = 1.
(3) p rob. (4) above, $(-2/p) = 1$ it $p \equiv 1 (mod 8)$
or $p \equiv 3 (mod 8)$ $\frac{1}{\sqrt{1 + 2} \left(\frac{1}{1 + n \text{ is even}}, \frac{1}{2} \frac{1}{2} \text{ or } \frac{1}{2} \frac{1}{2} \text{ (mod 8)}\right)}$
 $\frac{1}{\sqrt{1 + n \text{ is odd}}, \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \frac{$ (0) $(1)^{2}+3)$ ≤ 7 $1^{2} = -3$ (mod ρ) Problem (5) above addresses p > 3, in

which case $(-3/\rho) = 1$ if $\rho \equiv 1 \pmod{6}$. For $\rho = 2$

It *n* is even, n^2 is is add, $2 \chi n^2 + 3$

It *n* is cold, n^2 is even, so $2 \chi n^2 + 3$ $For p=3 n²+3=0 (mod 3) < 2 n²=0 (mod 3)$
 \Leftrightarrow 3/n- ρ / n^{2} +3 (1+ n is even, and $\rho = 1 \pmod{6}$

if also $3/n$, $\rho = 3$

if n is odd, $\rho = 2$ or $\rho = 1 \pmod{6}$

if also $3/n$, $\rho = 3$ 7. Prove There exist intinitely many primes of Pf: Use prob. (4) above since it has conditions
for (-2 p) using (mod 8). == Assume finitely many primes of form
8K+3, which is odd, 5ay p1) P2) --1 Pr Consider N = (ppmp)²+2 (N is odd).

 $\begin{array}{ll} \rho & \text{s.t.} & p \neq \rho \\ \rho & \text{and} & \rho & \text{(} \rho_1 \cdots \rho_n \text{)}^2 \implies \rho & \text{if.} \end{array}$ $M \equiv 0 \pmod{p}$ or $(p_{1} \cdot p_{2})^{2} = -2 \pmod{p}$ \therefore (3) prob. (4) above, p = ((mod8) or Suppose $M = q^{K_1} \cdot \cdot \cdot q^{K_s}$ and all q_i are
 $\frac{1}{15 \cdot 7}$, $q_i \equiv 1 \pmod{8}$.
 $\therefore M = q^{K_1} q^{K_2} \cdot \cdot \cdot q^{K_s} = 1 \pmod{8}$ [1] But $\rho_i = 3(mods), so$ $\rho_i = 9 = 1(mods)$ $= \int_{1}^{2} \sqrt{2\pi} f(r^{2}) = 1$ (mod 8) \therefore $(\rho_1 \cdot \rho_r)^2$ = 3 (mod 8) $M = 3$ (mod 8), a contradiction
to $C13$. $c = A / | q;$ can't be s.t. $q; \equiv | (mod 8)$,
So There must be some odd prime
divisor $q; = \rho$ of M s.t. $\rho \equiv 3 (mod 8)$.
And This contradicts $\rho;$ above being finite.

8. Find a prime number p That is simultaneously
expressible in The forms x^2+y^2 , $u^2 + 2v^2$, and $\begin{array}{cc} \mathcal{I} & \xleftarrow{2} \chi^{2} = \rho, \quad \text{then} & \chi^{2} = \frac{1}{2} \left(\text{mod} \rho \right), \text{ or} \end{array}$ $\frac{x}{\gamma^2} \equiv -/(\omega_0 \omega/\rho).$ $Sim_{l}(arly)$ $\overline{v^{2}}$ = -2 (mod p), $\overline{s^{2}}$ = -3 (mod p) where $(\frac{x}{y})^2, (\frac{y}{y})^2,$ and $(\frac{r}{s})^2$ are integers. = . Look at $(-1/\rho) = (-2/\rho) = (-3/\rho)$ as a minimum
condition. $(-1/\rho) = 1$, it $\rho \equiv 1$ (mod 4) $(-2/\rho) = 1, i \neq \rho = 1 \pmod{8}$ or $\rho = 3 \pmod{8}$ [prob. 4] $(-3/\rho)=1$, if $\rho \equiv 1 \pmod{6}$ [prob. 5] \therefore if $\rho \equiv (mod \delta),$ Men $\rho \equiv (mod \gamma)$ i^f $\rho \equiv 1$ (unod 24), Then $\rho \equiv 1$ (mod 4), $\rho \equiv 1$ (mod 8),

: Consider p = 1+24k, for K=1, 2,3,...
: Look at 25, 49, 73,... $73 (s perum and 73 \equiv 1 (mod 4), 73 \equiv 1 (mod 8),$ $\begin{array}{cc} \nabla c & c \nmid \text{can } u\rho \nightharpoondown & \nabla^2 + 3^2 = 73 \nightharpoondown & \nabla^2 + 2(1)^2 = 73 \n\end{array}$ $5^{2}+3(4)^{2}=73$ Vhese were obtained by trial terror, but $5.5.$ $\frac{6}{5}$ = 1+24k and $\sqrt{4}$ en chosen
x,y s.f. $(\frac{x}{y})^2$ is an integer, etc. 9. If ρ and q are odd primes satisfying $\rho = q + 4q$
for some q , establish that $(a/\rho) = (a/q)$, and
in particular, That $(6/37) = (6/13)$ $P+$: Since $p = q + 4a$, $(p/q) = (q + 4a/q)$ But $q+4q = 4a \pmod{q}$, so $(q+4q/q) = (4a/q)$
= $(2a/q) = (a/q)$. $\sqrt{(q)} = (a/q)$ 213

 S_{1} m_{1} $\left\{ ar\right\} ,$ $q = p - 4a$, so $\left(q/p \right) = (p - 4a/p) = (-a/p)$ $\frac{1}{2} (q/p) = (-a/p) = (-1/p)(a/p)$ [2] LF $\rho \equiv 1 \pmod{4}$, Then $\left(\frac{-1}{\rho}\right) = \frac{1}{23}$ Secomes $(g/p) = (a/p)$ [2'] Bct by corollary 2 to $Th. 9.9$ (p. 198) ES_{y} $I13$ and $I2'3$, $(a/q) = (a/p)$ πf ρ =3 (mod 4), Men $\Gamma/(\rho)$ =-1, [23 becomes $(q/p) = -(a/p) \quad [2"]$ Note $\begin{array}{ll} \nA_0 \neq & \mu \equiv 4a + q \pmod{4} \Rightarrow p \equiv q \pmod{4} \\
\therefore & g \equiv 3 \pmod{4} \\
\therefore & 5 \vee \text{card}(a \wedge 2 \neq 0) \Rightarrow 9 \Rightarrow (q/q) = -(q/p)\n\end{array}$ \therefore By [1] and [2"], (a/q)=(p/q)=-(g/p)=
- (a/p) $(a/q)=(q/p)$.

10. Establish each of the following assertions:
(a) (s/p) = 1 = 1,9,11, or 19 (mod 20) $Pf: \beta y \neq f$, of (S/ρ) , ρ is an odd prime.

(1) If $\rho = 1, 9, 11, \text{ or } 19 \pmod{20}$, Then
 $\rho = 1, 9, 11, \text{ or } 19 \pmod{5} = 7$
 $\rho = 1, 9, 11, \text{ or } 19 \pmod{5} = 7$

Since $S = 1 \pmod{4}$, Then $(S/\rho) = (\rho/S)$
 $\therefore (S/\rho) = (\rho/S) = (1/S) \text{$ \therefore (5/p) = (. (2) Suppose $(5/p)=1$. Since $5=(\text{mod }4)$, $94cn (s/p) = (p/s) = 1.$ $\frac{1}{2}$, $1 \equiv \rho^{\frac{S-1}{2}}(modS)$, or $1 \equiv \rho^2(modS)$. A/so , general for any odd number,
 $\rho = /$ or 3 (mod 4). $\begin{array}{cc} 1. & p \equiv 1 \pmod{5} & \text{or} & p \equiv 4 \pmod{5} \\ \text{and} & p \equiv 1 \pmod{4} & \text{or} & p \equiv 3 \pmod{4} \end{array}$

 \therefore 4 $\rho \equiv 4 \pmod{20}$ or 4 $\rho \equiv 16 \pmod{20}$
and 5 $\rho \equiv 5 \pmod{20}$ or $5\rho \equiv 15 \pmod{20}$ $5a\sqrt{frac{1}{3}n}$ $\rho \equiv 1$ or -11 (mod 20)
or $\rho = 11$ or -1 (mod 20) \Rightarrow $\rho = 1, 9, 11, or 19 (mod 20)$ $(6)(6)(p) = 1 \Leftrightarrow p = 1, 5, 19, or 23 (mod 24)$ $\sqrt{4:(1)$ Suppose $\rho \equiv 1, 5, 19, or 23 (mod 24)$ Let $f \equiv 1 \pmod{24}$
 $\therefore f \equiv 1 \pmod{2} \implies (3/p)=1 \quad (74.9.10)$

and $p \equiv 1 \pmod{8} \implies (2/p)=1 \quad (74.9.6)$ \therefore (C/p) = (3/p)(z/p) = / Let $\rho = 5 \pmod{24}$
 $\rho = 5 \pmod{2} \Rightarrow (3/\rho) = 1 \quad (74.9.10)$
 $\rho = 5 \pmod{8} \Rightarrow (2/\rho) = 1 \quad (74.9.6)$ \therefore $(c/p) = (3/p)(2/p) = (-1)(-1) = 1$

Let $\rho = 19 (mod 24)$
 $\therefore \rho = 19 = 7 = -5 (mod 12) \Rightarrow (3/\rho) = -1$
 $\rho = 19 \equiv 3 (mod 8) = 7 (2/\rho) = -1$ $- - (6 / \rho) = (3 / \rho) (2 / \rho) = (-1)(-1) = 1$ Let $\rho = 23 \pmod{24}$
 $\therefore \rho = 23 \equiv 11 \equiv -1 \pmod{12} \Rightarrow (3/\rho) = 1$
 $\rho = 23 \equiv 7 \pmod{8} \Rightarrow 7 \qquad (2/\rho) = 1$ $=(6/\rho)=(3/\rho)(2/\rho)=$ (2) Suppose $(6/\rho) =$ $(3/\rho)(2/\rho) = / =$ $(3/\rho) = 1$ and $(2/\rho) = 1$
or $(3/\rho) = -1$ and $(2/\rho) = -1$ (a) $I + (3/p) = 1$ Men $p = 1$ (mod 12)
 $3p$ M. 9.10, for $p \neq 3$ or 9 (mod 12),

since Men $3/p$.

Also, $(2/p) = 1 \Rightarrow p = 1$ (mod 8)
 $3p$ M. 9.6

(1) $p \equiv 1$ (mod 12) and $p \equiv 1$ (mod 8) =7

 $Z\rho \equiv 2 \pmod{24} \ge \Rightarrow \rho \equiv 1 \pmod{24}$
 $Z\rho \equiv 3 \pmod{24} \searrow \frac{6}{545}$ (2) $\rho \equiv 1 \pmod{2}$ and $\rho \equiv -1 \pmod{8} = 0$
 $2 \rho \equiv 2 \pmod{24} = 7$ $\rho \equiv -5 = 7$
 $3 \rho \equiv -3 \pmod{24}$ $\rho \equiv 19 \pmod{24}$ (3) $\rho = -1 \pmod{2}$ and $\rho = 1 \pmod{8}$
 $2\rho = -2 \pmod{24}$
 $3\rho = 3 \pmod{24}$ (4) $p \equiv -1 \pmod{12}$ and $p \equiv -1 \pmod{8} = 1$
 $2p \equiv -2 \pmod{24}$ => $p \equiv -1 \equiv 7$
 $3p \equiv -3 \pmod{24}$ $\qquad p \equiv 23 \pmod{24}$: $(G/p)=1 \Rightarrow p = 1,5,19, or 23 (mod 24)$ (c) $(7/\rho) = 1 \Leftrightarrow \rho = 1, 3, 9, 19, 25, or 27 (mod 28)$ $Pf: (1)$ Suppose $(2/\rho) = 1$
(a) If $\rho = 1$ (mod 4), Plien $(2/\rho) = (\rho/2)$ $\frac{7}{2}$ = p³ (mod 7)

Trunning Through p=1,2,3,4,5,6

and looking at p³, we get

 $\rho \equiv 1, 2, \rho$ or 4 (mod ?) $\rho \equiv$ ((und 4) and $\rho \equiv$ 1, 2, or 4 (mod 7) (i) $\rho \equiv |(mod4)\rangle$ $7\rho \equiv 7(mod28)$
 $\rho \equiv |(mod7)\rangle$ $4\rho \equiv 4(mod28) = 3$
 $\therefore \rho \equiv (mod28)$ $\begin{array}{l} (2) \ p \equiv 1 \pmod{4} \\ p \equiv 2 \pmod{7} \\ \therefore \ p \equiv 9 \pmod{28} \end{array} \Rightarrow 8p \equiv 16$ (3) $p \equiv 1 \pmod{4}$ $7p \equiv 7 \pmod{28}$
 $p \equiv 4 \pmod{7}$ $4p \equiv 16 \pmod{28}$ = 7 $6p \equiv 32$
 $\frac{1}{2}p \equiv 25 \pmod{28}$ (s) If $\rho = 3(mod4)$, Then $(7/\rho) = -(0/7)$ $\frac{7}{2}$ = $\frac{7}{2}$ = $\frac{3}{2}$ (mod 7)
 $\frac{1}{\frac{4}{5}} = \frac{3}{5}$ or 6 (mod 7) =>
 $\frac{4}{5} = 12,20$ or 24 (mod 28) =>
 $\frac{6}{5}$ = 24, 40, or 48 (mod 28) $\rho \equiv 3 \pmod{4}$ = ? $7\rho \equiv 21 \pmod{28}$

(1) $7\rho = 2/(mod28)$ $\left(\rho = 3 (mod28) \right)$
 $8\rho = 24 (mod28)$ $\left(\rho = 3/(mod28) \right)$ (2) $\begin{array}{c} 2) \ 3) \ 3) \ 4) \ 5) \ 6) \ 7) \ 7) \ 1000 \ 11) \ 12) \end{array}$ (3) $Z_{p} = z \ (mod 28) \}$ $p = 27 (mod 28)$
 $S_{p} = 48 (mod 28)$ $\Gamma_{1}(7/\rho) = 1 \Rightarrow \rho = (3, 9, 19, 25, or 27 (mod 28))$ (2) Suppose $\rho \equiv 1, 5, 7, 17, 25,$ or 27 (mod 28) $\frac{15y}{15y}$ def. of $(7/p)$, ρ is an odd prime.
Also, note 7=3 (mod 4) (a) If $\beta = 3, 19, or 27 (mod 28),$ Then
 $\beta = 3, 19, or 27 (mod 4), so$ $\beta = 3 (mod 4)$ $\therefore (7/\rho) = -(\rho/7)$ (corollary 1, p. 198) Also, $\rho = 3, 19, or 27 (mod 7) = 7$
 $\rho = 3, 5, 6 (mod 7)$ $\frac{1}{2}$ (p/7) = (3/7), (5/2), or (6/7)

 $(3/7) = -(7/8) = -(1/3) = -1$
 $(5/7) = (7/5) = (2/5) = -1$
 $(6/7) = (3/7)(2/7) = (-1)(1) = -1$ \therefore (p/7) = -/ $2(\rho) = -(\rho/7) = 1$ (b) If $\rho \equiv 1, 9, or 25 \pmod{28}$, Then
 $\rho \equiv 1, 9, or 25 \pmod{4}$, so $\rho \equiv 1 \pmod{4}$ $(7/\rho) = (\rho/7)$ (corollary), p.198) $A(sc, p \equiv 1, 9, 2s \ (mod 7))$ \therefore (p/z) = (1/7), (9/7), (25/7) = $(2/7), (4, 7)$
= $(3/7), (4, 7)$ \therefore (7/p) = (p/7) = 1. $\therefore \rho = 1, 3, 5, 15, 25, 27 \pmod{28} \implies (7/\rho) = 1$

11. Prove Phat There are infinitely many primes of The $DF: Assume funcley many primes of form
\nSK-1. Call Them $\rho_1, \rho_2, ..., \rho_{r+}$ where
\n $\rho_r > \rho_1, i \leq r$.$ Consider The integer M=5(n!)-1. For n>1,
M is odd, since n! is even as it contains
2. : M has an odd prime divisor. Note That any odd prime divisor p of m
must be s.r. $\rho \ge n$; for if $\rho \le n$,
Then $\rho \mid n!$, so $\rho \mid m$ and $\rho \mid s(n!)^2 = \rho \mid n$, a contradiction. For $N = S(\rho, 1)^{2} - 1$, let ρ be any odd
prime divitor. : $\rho > \rho_r$ and ρ cannot be
of form SK-1. $\int_{S(\rho_1)}^S 2\pi i (mud\rho) \approx 25(\rho_1)^2 5(mod\rho)$ [i] Since $\rho > \rho_r \ge 19 = 5k-1$ for $k=4$.
 $\therefore \quad \rho c \sim d \ (s, \rho) = 1.$ $\sum_{i} \sum_{j}$ =7 (s/p) = 1

But from prob. 10 (a) above, $p = 1, 5, 11, or 19$ (mod 20)
=> $p = 1, 7, 11, 15$ (mod 5) =>
 $p = 1 or 4$ (mod 5) int $\rho = 4$ (and 5), Place $\rho = -1$ (mod 5) =>
 $\rho = 5k-1$, some k. This can't be
since $\rho > \rho$, and ρ , is The largest \therefore $\rho \equiv /$ (mods), or $\rho = 5k+1$ Since p is any odd prime divisor of M, $M = (SK, 1)^{n_1} (SK, 1)^{n_2} \cdots (SK, 1)^{n_s}$ But $(Sk, +1)$ is of form $SK'+1$,
so N is of form $SK''+1$. But Mis contradicts $M = 5(\rho_r!)^2 - ($
of form $5k-1$. $(1 + 5k - 1 = 5k'' + 1, 7km 5(k-k'') = 2 \Rightarrow 5(2).$ - Assumption of finite number of primes of

12 Verity The tollowing: (a) The prime divisors p #3 of The integer n²-n+1
are of form 6 k+1. Pf : First note n^2 n+1 is odd for all $n \ge 1$. For if n is odd, n^2 is odd, so n^2 -n is even, so n^2-n+1 is odd. EF n is even, M^2 is even, M^2 -4 1s even, so <u>n-n+l</u> is odd. -- prime divisors p of n = n+1 = 2.
With assumption p = 3, Then p = 3. $\frac{\sqrt{2} \int \rho \left| n^{2} - \eta + \right|}{(2n-1)^{2} = 4n^{2} - 4\eta + 1}$ $\frac{1}{2} \rho$ | [(2n-1)² + 3] \therefore $(2n-1)^2 = -3(mod\rho) = 7(-3/\rho) = 1$ = $\frac{1}{\beta} = 0, 1, 2, 3, 4, 5 \pmod{6}$.

if $\rho = 0, 2, 4 \pmod{6}$, Prem $\rho = 0, 2, 4 \pmod{2}$

= 2/p, which can't be since $\rho > 3$.

if $\rho = 3 \pmod{6}$, Prem $\rho = 3 \pmod{5}$ = 7

3/p, which can't be since $\rho > 3$.

 $\frac{1}{\rho} = (\frac{1}{\rho} \pm \frac{1}{\rho}) = (\frac{1}{\rho} \pm \frac{1}{\rho}) = (\frac{1}{\rho} \pm \frac{1}{\rho}) = \frac{1}{\rho} = 1$ $\leq p \equiv (C_{mod}6) = p = 1+6k$, some K. (6) The prime divisors p #5 of The integer n²+n-1
are of The form 10 K +1 or 10 K +9 $PF: z f \rho l n^{2} + h - 1$, Then $\rho l 4n^{2} + 4n - 4$. $(2n t)^{2}-5=4n^{2}+4n-4$. $F.F. \rho \neq S, \rho | n^2 + n - 1 = 7 (5/\rho) = 1$ k_y Pros. 10 (a), $\rho \equiv 1, 5, 11, 19$ (mod 20) =7 $\rho \equiv 1, 5, 11, 19 \pmod{10}$ => $\rho = \{ or \} (mod 10)$
=> $\rho = \{ +10K \text{ or } \rho = 9 + 10K \}$ somek

(c) The prime divisors p of The integer 2n (n+i) +1
are of The form $\rho \equiv 1 \pmod{4}$. $P\{f: Zn(n+1)+1 = 2n^2+2n+1\}$ $IIf \rho$ 2n (n+1) + 1, Then p 4n²⁺⁴n+2 => $\rho((2n+1)^{2}+1)=2(2n+1)^{2}=-(mod p)$ \therefore ρ $(2n(n+1)+1) \Rightarrow$ $(-1/\rho) = 1$ \Rightarrow $\beta \equiv 1 \pmod{4}$
by corollary on p.187. (d) The prime divisors p of The integer 3n (n+i)+1
are of The form p = 1 (mod 6) $17: 3n(n+1)+(7) = 3n^2+3n+1$ $\frac{1}{\sqrt{2}}$ $\int 3n(n+1)+1$ \Rightarrow $\int 36n^{2}+36n+12$ $=7p/(6n+3)^{2}+3$ => $(6n+3) = -3 (mod p) [1]$

 $Note that if n is even or odd, n(n+1) is even.$
 $even ... 3n(n+1) + 1 is odd, so p \ne 2.$
 $If p = 3, N_{1+n} p | 3n(n+1) + 1 = p | 1.$ $\rho > 3$, so gcd $(-3, \rho) = /$, go $213 \Rightarrow (-3/\rho) = 1$ $15y$ prob. $5(a), p \equiv 1 \pmod{6}.$ 13. (a) Show That it p is a prime divisor of
839 = 38² - 5. 1/², Then (5/p) = 1. Use This
fact to conclude That 889 is a prime number. $14:(1)$ If ρ | 38²-5.11², Then 38^{2} 5.11² = 0 (mod p) \Leftrightarrow 38² = 5.11² (mod p) . $38iS a solution to X^2 = 5 \cdot 11^2 (mod p),$
and so $(5 \cdot 11^2/p) = 1 = 7(5/p)(11^2/p) = 1$ (2) Since 29²=841 > 839 only need to

By prob. (0 G), $(S/\rho) = 1 \Rightarrow$
 $\rho = 1, 5, 11, 19 \pmod{20} \Rightarrow$
 $\rho = 1, 9, 11, 19 \pmod{10} \Rightarrow$
 $\rho = 1, 9 \pmod{10} \Rightarrow \rho = 11 \text{ or } 19$ If 19 38² - 5.11², Ren 19 5.11².
If 11 38² - 5.11², Ren 11 38².
BoTh of Riese are false, so Riere is
no prime p 5.7. (5/p) = 1. : (5/p) #/ assumption Phat 839
is divisible by a prime is false (5) Prove Phat 60R 397 = 20²-3 and $233 = 29^2 - 3.6^2$ ar primes. (1) 397 = $20^{2}-3$ Assume There is a prime divisor p s.t. p/397
Since 20² = 400, only consider p < 20.
... 20² = 3 (mod p) = 7 (3/p) = 1.
... 20² = 3 (mod p) = 1 (mod 12)
... Rult 11 × 3 ? 1 and 13 × 3 ? 7, so There is

no p s.t. p | 397 - 7 327 is prime. (2) 733 = 29² - 3.6² Assume Piere is a prime p s i. p | 733.
28² = 284, so just consider p < 28. 29^2 =3.6² (modp) = $(3.6^2/\rho)$ =1 = 7 (3/p)=1
 \therefore By $\sqrt{4}$. 9.10, $\rho = \pm 1$ (mod 12).
 \therefore $\rho = 11, 13, \, \rho$ ~ 23 .
 \therefore But 11/737, 13/738, and 23/733.
 \therefore no prime p s.t. p 1733 = 733 is prime. 14. Solve the quadratic congruence $x^2 \equiv 11 \pmod{35}$ Since $35=7.5 \times 15$ a solution 47×15
a solution to: $x^2=11 \pmod{5}$ and
 $x^2=11 \pmod{7}$ $\therefore x^2 \equiv 1 \pmod{s} \iff x^2 \equiv 1 \pmod{s}$ $x^2 \equiv 1/(mod 7) \Leftrightarrow x^2 \equiv 4(mod 7)$
 $x^3 \equiv 1/(mod 7) \Leftrightarrow x^2 \equiv 4(mod 7)$ $= -(a) \times \equiv 1 \pmod{5}$ and $x = 2 \pmod{7}$

(b) $x \equiv 1 \pmod{5}$ and $x \equiv -2 \pmod{7}$

(c) $x \equiv -1 \pmod{5}$ and $x \equiv 2 \pmod{7}$

(d) $x \equiv -1 \pmod{5}$ and $x \equiv -2 \pmod{7}$ For all of These, $n=5.7$, $N_1=7$, $N_2=5$ \therefore $7x = 1$ (mod 6) $x_2 = 3$ $x_1 \equiv 3$ $(a) \times 1$ (mods) and $x=2$ (mod?) $Y = 1.7.3 + 2.5.3 = 5/(mod 35))$ \equiv 16 (mod 35) (6) $x \equiv 1 \pmod{5}$ and $x \equiv -2 \pmod{7}$ $\therefore x = 1 - 7 - 3 + (-2) - 5 - 3 = -9 = 26 (mod 35)$ (C) $X \equiv 1 \pmod{S}$ and $X \equiv 2 \pmod{7}$ $\therefore x = (-1) \cdot 7 \cdot 3 + 2 \cdot 5 \cdot 3 = 9 = 9 \pmod{35}$ (d) $x \equiv -(m \cdot d \cdot)$ and $x \equiv -2(m \cdot d \cdot 7)$

 \therefore $X = (-1) \cdot 7 \cdot 3 + (-2) \cdot 5 \cdot 3 = -51 \equiv 19 \pmod{55}$ $X = 9, 16, 19, or 26 (mod 3s)$ 15. Establish That 7 is a primitive root of any
prime of The form 2^{4n} +1. $H: For n=0, 2^{4n}-1=2, \beta(2)=1, 7'=7,$
and $7 \equiv 1 \pmod{2}$, so you could say
7 (and every odd intiger) is a primitive
root of 2. $So assume n > 0$. 2^{4n} is odd By prob. 7 of section 9.1 (p.184), every
quadratic non-residue of prime $\rho = 2 \frac{k}{t}$ $2^{4n}+1$ is of form $2^{k}+1$, so just need
to show 7 is a guadratic nonresidue
of prime $\rho = 2^{4n}+1$, i.e., $(7/\rho) = -1$. Note Phat for $n = 3k$, $2^{\frac{4n}{15}} + 1$ is not prime,
for $2^{\frac{4n}{15} + 1} = (2^{\frac{4k}{5}})^3 + 1$ which

can be factored to $(2^{4k}+1)[(2^{4k})^2-2^{4k}+1]$ $\frac{1}{2}$ 2⁴ⁿ+1 can only be prime it n = 3k+1
or n = 3k+2, for k= $C,1,2, ...$ $Note: 2^{4n}+1=2^{2\cdot 2n}+1=4^{2n}+1\equiv (mod 4).$ $(7/\rho) = (\rho/7)$, by corollary 2, p. 198. $\frac{1}{n}$ need to show (p/7) =- / for n = 3K+1
or n = 3K+2, K = 0, 1, L..., assuming p prime $n = 3K + 1:$ Look at $(2^{4(3K + 1)} + 1)(mod 7), and$ $notc$ $8 = 1$ (mod 7) $2^{4(3k+r)}$ + $/ = 2^{3(3k+1)}$ $2^{(3k+1)}$ + $/$ = $(8^{35}) (8^{5})$ $\equiv (1)(1.2) + 1 = 3 (mod 7)$ $2^-(2^{4(3k+1)}+1/7) = (3/7) = -(7/3) = -(1/3) = M = 3k+2$: $2^{4(3k+2)} + 1 = 2^{3(3k+2)} \cdot 2^{3k+2} + 1$
= $(5^{3k+2})(5^{k} \cdot 4) + 1$ = (1)(1.4) + | = 5 (mod)
...(2^{4(3K+2)} + | /7) = (5/7) = (7/5) = (2/5) = -|

 \therefore When 2^{44} + 1 is prime, $(\rho/7) = -1$, so $(7/p)$ =-1, so 7 is a quadratic non residue, and \therefore by pros. $7,$ saction 9.1, 7 is a primitive root of 2rd/. 16. Let a and 6 > 1 be relatively prime integers, with
6 odd. If b = p, p, is The decomposition of
6 into odd primes (not necessarily distinct), Then
The Jacobi symbol (a/b) is defined by $(a/6) = (a/\rho)(a/\rho) \cdots (a/\rho_r)$ where (a/ρ_i) is The Legendre symbol. Evaluate (21/221), (215/253), (631/1099) (a) $(21/221)$ $221 = 13.17$ \therefore (21/221) = (21/13)(21/17) $=$ (3/13)(7/18)(3/17)(7/17) = $(13/8)(13/7)(17/5)(17/7)$ $=(1/3)(6/7)(2/3)(3/7)$

= (1) (3/7)(2/7)(-1) (3/7)
= (-1) (3²/7)(2/7) = (-1)(1)(1) = -1 $(21/22) = -1$ (6) $(215/253)$ $253 = 11.23$ $215 = 5.43$ $\frac{(215/253)-(215/11)(215/23)}{=(5/11)(43/11)(5/23)(43/23)}$
= (s/11)(43/11)(5/23)(43/23)
= (11/5) (10/11)(23/5)(20/23) = (1/5) (z/11) (5/11) (3/5) (4/23) (5/23)
= (1) (-1) (1) (5/3) (1) (23/5) $=$ (-1)(2/3)(3/5) = $(-i)(-i)(5/3) = (2/3) = -1$ (c) $(6)(631/1099)$ $(099 = 7.157, 63115)$ prime $(631/1075) = (631/7)(631/157)$
= (1/7)(3/157)
= (1)(157/3) = (1/3) = ($\frac{1}{2}$ (63//1099) = 1 17. Under The hypothesis of The previous problem, show that

but The converse is false. $PF:QAssum X²=a(mod 6) has a solution.$
Let $6= P_1 P_2 \cdots P_r$, and note ged (a, 6) = 1 \therefore $x^2 \equiv G \pmod{p}$, $x^2 \equiv a \pmod{p}$, $x^2 \equiv a \pmod{p}$ and note $gcd(a,p)=$. \therefore $(a/p_i)=1$, \therefore $(a/b)=(a/p_i)(a/p_i)-(a/p_n)$ $=$ (1)(1) \cdots (1) $=$ (. (b) Now assume $(a/6) = 1$ and let $b = p_1 p_2$
... $(a/6) = (a/p_1)ca(p_2)$. \therefore it may be That $(a/\rho_1) = (a/\rho_2) = -1$ - There would not be a solution to
x² = a (mod 6). As a concrete example, $(2/8) = -1$ and
 $(2/5) = -1$. : $(2/15) = 1$, but
 $x^2 = 2 \pmod{15}$ can't have a solution.
If it did, Then so would $x^2 = 2 \pmod{3}$

18. Prove That The following properties of The Jacobi
hold: If 6 and 6' are positive odd integers
and gcd (aa', 66') = 1, Then (a) $a \equiv a' \pmod{b}$ implies That $(a/6) = (a'/6)$ Pf: Let 6 = p, p, ... p, b. The decomposition
of 6 into odd primes (not necessarily
distinct). Then by def. of (a/6),
Where (a/p.) is The Legendre symbol, $(a/b) = (a/\rho_0)(a/\rho_2) - (a/\rho_r)$ From ad (aa', 66') =1, we get
gcd (a, p;) = 1 and gcd (a', p;) =1. From $a \equiv a' \pmod{6}$, we get $a \equiv a' \pmod{p}$. - from $\sqrt{4}$. 9.2, $(a/\rho_i) = (a'/\rho_i)$. \therefore $(a/\rho_1) - (a/\rho_r) = (a'/\rho_1) - (a'/\rho_r)$ \therefore (a/6) = (a'/6) (3) $(ax'/b) = (a/6)(a'/b)$

As in (G) above, let $6 = \rho_1 \rho_2 \cdots \rho_r$. $Note that $gcd(aa'|b') = 1 \Rightarrow gcd(a/b) = 1$ and $gcd(a'/b) = 1$.$ Using M. 9.2, $(aa'/6) = (aa'/p) (aa'/p) - (aa'/p)$ = $(a/\rho_{1})(a'/\rho_{1})(a/\rho_{2})(a'/\rho_{2})\cdots(a/\rho_{r})(a'/\rho_{r})$ = $(a/\rho_1)(a/\rho_2)-(a/\rho_r)-(a'/\rho_1)(a'/\rho_2)-(a'/\rho_r)$ $= (a/6)(a^{7}/6)$ (c) $(a/66') = (a/6)(a/6')$ First note and $(aa', b'') = 1 \Rightarrow \gcd(a/b) = 1$ As in (a), let $6 = \frac{\beta_1 \beta_2 \cdots \beta_r}{\beta_1 \beta_2 \cdots \beta_r}$ and let $C = (a / b'_{0}) = (a / p_{1})(a/p_{2}) \cdots (a/p_{n})(a/p_{1}')(a/p_{2}) \cdots (a/p_{n}')$

 $= (a/6)(a/6)$ (d) $(a^{2}/b) = (a/b^{2}) = 1$ From (b) , letting $a'=a$, $(a^{2}/b) = (a \cdot a/b) = (a/b)(a/b)$
= $(a/p_{1}) \cdots (a/p_{r}) (a/p_{1}) \cdots (a/p_{r})$ = $(a/p_1)^2$ -- $(a/p_r)^2$ = \cdots | = | $Similarly, letting 6=6' in (c),$ $(a/6)^{2} = (a/6)(a/6) = 1$ as above. (c) (1/6) = / $\begin{array}{c} 74 is \text{Follows from (d) } |z| \neq in \ a = 1 \ \text{so } \text{Part} \ (= \text{Ca}^2/6) = (1^2/6) = (1/6) \end{array}$ (f) $(-1/6) = (-1)^{(6-1)/2}$ $\Sigma f_{b} = \rho_{1} \rho_{2} \cdots \rho_{r}$, Then by det., and using
 $\nabla h \cdot 9.2$, $(-1/6) = (-1/\rho_{1}) (-1/\rho_{2}) \cdots (-1/\rho_{r})$

= $\langle P_1 - 1 \rangle^{(P_1 - 1)/2}(-1)^{(P_2 - 1)/2}$ - $\cdot \cdot \cdot (-1)^{(P_1 - 1)/2}$ [1] Now use The hint: it is and v are oddintegers, $\frac{1}{2}$ $\frac{u-1}{2}$ = r, $\frac{v-1}{2}$ = 5. $\frac{uv-1}{2} = \frac{(2r+1)(2s+1)-1}{2} = \frac{4rs+2rs+2s}{2}$ $=$ $2rs + r + s$ \therefore p+5 = r+5 (mud 2) =7 $r+s = 2rs + r + s$ (mod 2) =7 $\frac{u-1}{2} + \frac{v-1}{2} = \frac{uv-1}{2} (mod 2)$ $\frac{1}{2}$ $\frac{a-1}{2}$ $\frac{v-1}{2}$ and $\frac{uv-1}{2}$ must soll be odd, or both must be even. $\frac{1}{2}(-1)^{\frac{1}{2}+\frac{1}{2}}=\frac{1}{2}$ $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} (-1)^{n} \sum_{i=1}^{n} (-1)^{n} \sum_{j=1}^{n} (-1)^{n}$ $= (-1)^{\binom{p_1}{2}-1}$ $= (-1)^{\sum_{i=1}^{n} \frac{1}{2} \cdot \frac{1}{2}} = (-1)^{\sum_{i=1}^{n} \frac{1}{2}}$

 \therefore $\left(\frac{-1}{6}\right) = \left(\frac{-1}{1}\right)^{(6-1)/2}$ $(9)(2/6) = (-1)^{(5-1)/8}$ $cct 6 = p - p$ β y dcf., $(2/6)$ = $(2/p_1)$ - $(2/p_r)$ Using corollary to $\sqrt{4}$, 9.6, p. 19/, (2/p.)=(-1)^{(p.2-1})8

(2/6) = (-1)^{(p.2}-1)/8 (-1)^{(p₂-1)/8}

(-1)^{(p₂₋₁)/8 (-1)</sub>(p²-1)/8} Now use The hint: it u, v are odd integers,
Then u=4n+1 or u=4r+3, somer $v=4s+1$ or $v=4s+3$, some S (1) $u = 4r + 1$, $v = 4s + 1$ \therefore $u^{2}-1 = 16r^{2}+8r, v^{2}-16s^{2}-8r$ $\frac{u^{2}}{x^{2}} + \frac{v^{2}}{x} = 2r^{2} + r + 2s^{2} + s$ $\frac{u^{2}}{x} + \frac{v^{2}}{x} = x + s \pmod{2}$ [1] $UV = /Grs + 4r + 4s + 1$

 $(uv)^{\frac{2}{2}}$ /6² s^2 + 64 s^2 + 64 rs^2 + 16 rs + $64r^{2}s + 16r^{2} + 16rs + 4r$ $+64rs^{2}+16rs+16s^{2}+4s$ $+ 16rs + 4r + 4s + 1$ \therefore $(uv)^{2}1 = 16^{2}r^{2}s^{2} + 128r^{2}s + 128rs^{2} + 64rs$ $\frac{+16r^{2}+16s^{2}+8r+8s}{2}$
 $\frac{(uv)^{2}-1}{2}$ = r + S (mod 2) [2] $u^2 + v^2 / (uv)^2 / (mod 2)$ (2) $u = 4r+1, v = 4s+3$ u^{2} = 16 r^{2} + 8 r , v^{2} - 1 = 16 s^{2} + 24s + 8 $\frac{u^{2}}{2} + \frac{v^{2}}{2} = 2r^{2} + r + 2s^{2} + 3s + 1$ $\frac{u^{2}}{8} + \frac{v^{2}}{2} = r + s + 1 \quad (mod 2)$ [1] $uv = 16rs + 12r + 4s + 3$ $(uv)^{2} = 16^{2}r^{2}s^{2} + (16)(12)r^{2}s + 64rs^{2} + 48rs$ $+(12)(16)\lambda^{2}8+144\lambda^{2}+48\lambda^{5}+36\lambda^{4}$ + $64rs^2$ + 48rs + 16s² + 12s $+ 48rs + 36r + 12s + 9$

 \therefore $(uv)^{2}$ = $|6r^{2}s^{2} + (24)(16)r^{2}s + 128rs^{2} +$ $(4)(48)$ \wedge 5 + $144r^2 + 16s^2 +$ $72r + 24s + 8$ $\frac{(uv)^21}{8} = 9v + 3s + 1 \equiv r + s + 1 \pmod{2}$ $\sqrt{1-(1)^2}$ $\sqrt{23}$ \Rightarrow $\frac{u^2}{2}$ + $\frac{v^2}{2}$ = $\frac{(uv)^2}{8}$ (mod 2) (3) $(2 + r + 3, v = 4s + 1)$ same as $\#(2)$ above, by symmetry. (4) $u = 4r + 3, r = 4s + 3$ $u^{2}/=16r^{2}+24r+8$, $v^{2}/=16s^{2}+24s+8$ $\frac{u^{2}-1}{5} + \frac{v^{2}}{5} = 2r^{2} + 5r + 2s^{2} + 3s + 1$ $\frac{u^{2}-1}{s} + \frac{v^{2}}{s} = 3r + 3s = r + s (mod 2)$ [1] $UV = 16rs + 12r + 12s + 9$ $\overline{(UV)^2-1} = /(\sqrt[2]{5^2 + (16)(12)}r^2s + (16)(12)r^2 + 144rs)$ + (12)(16) r^2s + 144 r^2 + 144 rs + (9)(12) n $+(12)(16) r s^2 + 144 r s + 144 s^2 + (9)(12) s$ $+$ 144 rs + (9)(12) r + (9)(12) $s + 50$

 $= 16 \frac{2}{5} \frac{2}{s} + (24)(16) r^2 s + (24)(16) r s^2 +$ $(4)(144)rs + 144r^2 + 144s^2 +$ $(9)(24)$ r + (9)(24)s + 80 $\frac{(uv)^2}{2}$ = 27r+27s = r+s (mod2) [2] $\sqrt{21.27}$ = $\frac{u^{2}/v^{2}}{x}$ = $\frac{(uv)^{2}/(2u^{2})}{x^{2}}$ $\frac{1}{2}$ (1), (2), (3), (4) => $\frac{u^{2}-1}{8} + \frac{v^{2}-1}{8} = \frac{(uv)^{2}-1}{2}$ (mod 2) $(2/6) = (-1)^{(\rho_1^2 - 1)/8}$
(-1)
(-1)
(-1)
(-1)
(-1)
(-1)
(-2)
(-2) $=(-1)^{[(\rho_1 \rho_2)^2-1]} / 8$ --- $(-1)^{(\rho_1^2-1)}/8$ $=(-1)^{[(\rho_1\rho_2\cdots\rho_r)^2-1]/8}$ $=(-1)^{\int 2^{2}-1}$ 19. Derive The Generalized Quadratic Reciprocity Law.
If a and b are relatively prime positive odd $(a/6)(6/a) = (-1)^{\frac{a-1}{2} \cdot \frac{b-1}{2}}$

 $f: L² d = f₁ f₁ f_{r1}$, $6 = g₁ g² g_s$, be The prime decompositions of a and b, where, since a and
b are odd, p; and g; are odd primes, not
necessarily distinct.
Since ged (a,b)=1, Then p; f g; for any i,j. By det of (a/b), and using T4. 9.2(d), $(a/6) = (a/q)(a/q) \cdots (a/q_s)$ $=(\rho_{1} \cdot \rho_{r}/q_{1})(\rho_{1} \cdot \rho_{r}/q_{2})-(\rho_{1} \cdot \rho_{r}/q_{s})$ = $(\rho_1/q_1)\cdots(\rho_r/q_r)$. $(\rho_1/q_2) - (\rho_1/q_2)$. (ρ_{1}/q_{s}) ... (ρ_{r}/q_{s}) = $(\rho_1/q_1)(\rho_1/q_2)\cdots(\rho_1/q_s)$. Lrearranging $rows + cos(s)$ $(\rho_{2}/q_{1})(\rho_{2}/q_{2})\cdots(\rho_{2}/q_{s})$ $\forall o \quad q \in f$ r rows $(\rho_{r}/q,)(\rho_{r}/q_{2})-(\rho_{r}/q_{s})$ S co/s \overline{S}

 S imilar $4,$ $(6/a) = (9, /p,) \cdots (9s / p,)$ [r rows, S (σ / S] $(g_1/\rho_2) \cdots (g_s/\rho_s)$. $(9,/\rho_n)\cdots(9s/\rho_n)$ Ialigning (a/b) rows with
(b/a) rows] \therefore (a/6)(b/a) = $(p, q,) (p, q,) ... (p, q,) ... (q, q,) ... (q, q) ...$ $(\rho_2/q_1)(\rho_2/q_2)\cdots(\rho_2/q_6)\cdot(q_1/p_2)\cdots(q_6/p_2)$ $(\rho_r/q_r)(\rho_r/q_z)$... (ρ_r/q_s) . (q_1/p_r) ... (q_s/p_r) = $(\rho_1/q_1)(q_1/p_1)$... $(\rho_1/q_5)(q_6/p_1)$. $(\rho_2/q_1)(q_1/p_2) \cdots (\rho_2/q_s)(q_s/p_s)$ $(\rho_{r}/\rho_{1})(q_{1}/\rho_{r})\cdots(\rho_{r}/q_{s})(q_{s}/\rho_{r})$ Now using quadratic reciprocity

 $=$ $\binom{-1}{1}$ $\frac{\binom{1}{1} - 1}{2}$... $\binom{-1}{-1}$ $\frac{\binom{1}{2} - 1}{2}$. $\frac{\rho_2-1}{(-1)^{\frac{2}{2}}}$ $\frac{2}{2}$ \cdots $\frac{\rho_2-1}{2}$ $\frac{8}{2}$ $\frac{p_{r-1}}{2}, \frac{q_{1}-1}{2}, \dots$ $\frac{p_{r-1}}{2}, \frac{q_{s-1}}{2}$ $=\frac{(\frac{p}{2})}{\frac{2}{2}}\left[\frac{9}{2}+\frac{1}{2}+\frac{9}{2}\right]$ $\frac{1}{(2i)^{2}}\left(\frac{1}{2}-1\right)\left[\frac{1}{2}\frac{1}{2}+\cdots+\frac{1}{2}\frac{1}{2}\right].$ $\left(-1\right)^{\frac{\frac{\beta_{n-1}}{2}\left(\frac{\beta_{1}-1}{2}+\cdots+\frac{\beta_{s}-1}{2}\right)}{2}}}$ $\sqrt{\ }}$ 13y prob. 18(f) above, when u, v are odd integers, $\frac{u-1}{2} + \frac{v-1}{2} = (-1)^{u-1}$ - - LIJ Lecomes, $(a/6)(6/9) = (-1)^{(\frac{p-1}{2})(\frac{q-1}{2})}$ $\frac{(\frac{p}{2})}{(\frac{1}{2})} \cdot \frac{(\frac{p}{2})}{(\frac{p}{2})}$. $(1)^{\frac{(p_{r}-1)}{2}}\left(\frac{q_{1}-q_{5}-1}{2}\right)$

 $=\left(-1\right)^{\left(\begin{array}{c} \rho_{1-1} & \frac{\rho_{1-1}}{2} \\ 2 & 2 \end{array}\right)}$ $\frac{(\frac{\beta}{2}-1)(\frac{\beta-1}{2})}{2}$. $\frac{(\frac{\rho_{r}-1}{2})(\frac{b-1}{2})}{\frac{2}{2}}$ $=\frac{1}{2}$ $\left(\frac{p-1}{2}+\frac{p-1}{2}+\cdots+\frac{p-1}{2}\right)\left(\frac{2-1}{2}\right)$ $=(-1)^{\frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2}}$ $=\left(-1\right)\left[2\frac{a-1}{2}\right]\left(\frac{b-1}{2}\right)$ $(a/6)(b/6) = (-1)^{(\frac{a-1}{2})(\frac{6-1}{2})}$ 20. Using The Generalized Quadratic Reciprocity Law,
Letermine whether The congruence, First, note 231 = 3.7.11, 1105 = 5.13.17.
- gcd (231, 1105) = 1. By prob. 17 above, if 231 is a quadratic
residue of 1105 (i.e., x^2 =231 (mod 1105) has a
solution), Then (231/1105) = 1. Can't use

converse, but if can show $(231/1105) = -($,
Then can state $x^2 = 231 \pmod{105}$ is not $SolVchle$ $(231/1105)(1105/231) = (-1)^{\frac{231}{2}} \frac{1105-1}{2}$ $=(-1)^{(15)(552)}$ \therefore (231/1105)(1105/231)(1105/231) = (1105/231) Using pros. 18 (d), $(231/1105) = (1105/231)$ $=$ (181+4.231/231) [181,5 prime] $= (181/231)$ [prob. 18(a)] $=$ (181/3)(181/7)(181/11) = $(1/3)(6/7)(5/11)$ $=$ $(2/7)(3/7)(1/5)$ = $(1)(-1)(1) = -1$

 $231/105) = -1$, 50 $x^2 = 231$ (mod 1105) is not solvable.