4.2 Basic Properties of Congruence

Note Title 1/28/2005 Def: Complete set of residues modulo n A set $A = \{a_1, a_2, ..., a_n\}$ is said to form a complete set of residues modulo n \iff given any integer \cong ,
there is an $q_i \in A$ s-t. a_i - \geq - K_n for some integer K, but for a + a;
and a ; c A, There exist integers q , n , o < o < n , s , t , a , $-z$ v = g n + r . Lemma: Let $A = \{a_1, \ldots, a_n\}$ be a complete set of
residues modulo n, and let $B = \{a_1, a_1, \ldots, a_{n-1}\}$. Then There is a one-to-one correspondence between Aand B. Af: Let Ke B. By def. of complete set
of residues, there is an a, GA 5. t. $K \equiv a_i \pmod{n}$, and $K \not\equiv a_j \pmod{n}$ for all $a_i \neq a_i$. Since There are n clements in B and in A, each element of B is matched with one and only one element of A.

- Given any element of A, There is an element of Bassociated with it, and only one element at B. For it $c_{k} \in A$ / is associated with two elements of β , say β ; and β ; Ren $a_k \equiv b$; (modn)
and $a_k \equiv b_j \pmod{n}$. β ; $\equiv b_j \pmod{n}$,
which is impossible, since $b_j < n_j$, $b_j < n_j$
so $0 < |b_j - b_j| < n_j$ and so n can't
divide a number less Than itself. Theorem 1: $A = \{x_1, a_2, ..., a_n\}$ is a complete set of
residues modulo $n \in P$ for a_i , $a_j \in A$,
 $a_i \neq a_j$, $a_j \neq a_j$ (modn) $Df: (1) Suppose A is a complete set, $(c f q; q; \epsilon A)$
s.t. $a_i \neq a_{j+1}$ and suppose $a_i \equiv a_j \pmod{n}$$ $a_i - a_j = k_n$, some k . $\Gamma(s)$ Let z be $s.t. z \equiv a$. (mudn). Such
a z exists since a : + cn $\equiv a$. (modn),
where c is any integer. $2 - 2 - 9$; = $8n$, some $5. [2]$

Adding E_1 and E_2 , $E-a_i = (k+1)/n$,
= = a_i (modn), contradicting det of
complete set. = $a_i \neq a_k$ (modn) (2) Suppose a: #aj (nodn) for aj, aj EA, ai taj $Consder$ $G_i = 9. n + r_i, for i \le i \le n$ Then $r_i \neq r_j$, for its, because it $r_i = r_j$
Then $a_i - a_j \geq (q_i - q_j) n_j$, and $\therefore a_i \equiv a_j \pmod{n}$ Since Plere are n members in set A,
There are n different r;, O=r; < n, so Yhere is a on-to-one correspondence Letween G_i and $\{0, 1, ..., n-1\}$, i.e., given any
 Γ_i , s.t. $0 \leq \Gamma_i < n$, There is an a_i , s.t. $a_i \equiv r_i \pmod{n}$. Now let Z be any integer.
By Div. Algorithm, Z = gn +r, osr<n : From statement above, There is an $a_i \in A$ s.t. $a_i - r = k_1$, some K. -7 $7 = qn + r = qn + (q, -kn),$ so $z = a_i + (g - k)n \ \sum_{s} \sum_{z}$

 S uppose $z \equiv q \cdot (mod n)$, $q \neq q$ $2 - 2 - 9 = 5n, som 5.$: From 213 $a_{i} + (g - k) n - a_{i} = S n, a_{i} - a_{j} = (s - g + k) n,$
- $a_{i} = a_{j} (mod n), a$ contradiction $2iz \ge 0$ one and only one of Theorem 2: if $a6\equiv o \pmod{p}$, prime, Then
 $a \equiv o \pmod{p}$ or $b \equiv o' \pmod{p}$. $Pf: Suppose a \neq O \ (mod \ \rho)$ $I. a = q\rho + r$, $0 < r < \rho$. Thus,
r and ρ are relatively prime. Since $3Ks.t.$ ab = $K\rho$, Then $65 = 995 + 5, k\rho = 995 + 5,$ $\begin{array}{|c|c|c|c|c|c|}\hline \rho(k-q6)=r6&-15&Euolds\\ [1ex] (200006)&0&6&-155516&6=p5. \hline \end{array}$

 \therefore $b \equiv 0 \ (mod p)$ $Phiorum 3: z \equiv q (modn) \implies z \neq cn \equiv a + dn (modn)$ $PF: (1)$ Suppose $Z \equiv a \pmod{n}$
 $Z-a = k_n$, some K \therefore $Z + Cn - (a + dn) = Z-a + cn - dn$ $=$ $kn + (c-d)n$ $=(k+c-d)n$ $2 + cn \equiv a + dn (modn)$ (2) S_{uppose} z+cn = a + dn (modn)
2+cn-(a +dn) = $Kn,$ some k $2 - 9 = -c + d + ky$ $=$ $(k-c+d)n$ \therefore $\vec{z} \equiv a \pmod{n}$ Problems 4.2 $L(G)$. If $a \equiv b \pmod{n}$ and m/n , Then $a \equiv b \pmod{m}$ $Pf: a=5(mod n)=a-5=kn, some K.$ $m|n \Rightarrow n = n,$ some r.
 $\therefore a - 5 = Kr m \Rightarrow a \equiv 6 \pmod{m}$

 (6) . If $a \equiv b \pmod{n}$, and $c \ge 0$, Then $ca \equiv cb \pmod{cn}$ $Nf: a-6 = Ky$, some $K: Ca-c6 = KcD = 7$
 $ca \equiv c6 \pmod{cn}$ (c) If $a \equiv 6 \pmod{n}$, and a, b, d all divisible
by d = 0, Then $a/d \equiv b/d \pmod{n/d}$ $Pf: a-b = K_{n,some} K. By assumption,
a = K, d : a/d = K;
b = K₂ d = K₂
n = K₃ d n/d = K₃$ $\kappa - K_1 d - K_2 d = K(K_3 d)$ $K_1 - K_2 = K K_3 = 7 - \frac{4}{d} - \frac{6}{d} = K(\frac{4}{d})$ $-19d = 6d (mod 4d)$ $a^2 \equiv \zeta^2 \pmod{n} \Rightarrow a \equiv \zeta \pmod{n}$ Z . $5^{2} = 4^{2} (mod 3)$ since $25-16 = 3-3$
But $5 \neq 4 (mod 3)$.

3. If $a \equiv 6 \pmod{n}$, Then god $(a, b) = 9cd(6, n)$ $PF: a-\zeta$ = K_1 , some K . Let d = gcd (a,h)
i. $a = dr$, n=ds, some r, s. $d-r-6 = Kds, b = d(r-Ks), -d/s.$ Let d' = gcd $(5, n)$. \therefore Since d $|n$ and $\frac{12y}{x}$ similar reasoning as above, d'a. 4. (a) Find remainder of $2^{50}\div7$, 41⁶⁵=7 2^{50} = 7 : 2^{50} = $(2^5)^{6}$, 2^5 = 4.7 + 4 $25\equiv 4 \pmod{7}$
 $-25^{\circ} \equiv 4^{\circ} \pmod{7}$

But $4^{\circ} = 2^{20} = (2^5)^4$ From a bove, $2^5 \equiv 4$ mod? \therefore $2^{20} \equiv 4^{4}$ (mod 7) $But 44 = 256 = 36.7 + 4$ \therefore 4" = 4 mud 7 . 4" - 4 = 0(mod 7)
 \therefore 2⁵⁰ - 4 = 4" - 4 = 2" - 4 = 4" + = 0 (mod 7)

 $2^{84} \equiv 4 \pmod{7}$, so 250 = 7 has remainder 4 41^{65}
 $7: 41^{65} = (41^{5})^{13}$, $41 = 5.7 + 6$
 $\therefore 41 = 6 \text{ (mod 7)}$
 $\therefore 41 = 6 \text{ (mod 7)}$
 $\therefore 71^{65} = 6^{5} \text{ (mod 7)}$
 $65 = 7776$
 $65 = 1110.7 + 6$ \therefore 41⁶⁵ = (41⁵)¹³ = (6⁵)¹³ = 6¹³ (mod 7) $6^{2} = 5 \cdot 7 + 1 = 6^{2} = 1 \pmod{7}$
 $\therefore 6^{12} = 1 \pmod{7} = 6^{13} = 6 \pmod{7}$ $7.41^{65} \equiv (6^{5})^{13} \equiv 6^{13} \equiv 6 \pmod{7}$ - 4/⁶⁵ = 7 has remainder 6 (6) What is remainder when $1^{2}+2^{5}+...+100^{5}=47$ $5i$ acc 1^5 = 1 mod 4 and since 1^5 = 7 ... mod 4
 $32 = 2^5 = 0$ and 4
 $2\sqrt{5} = 3$ and 4
 $2\sqrt{5} = 10$... mod 4
 $4^5 = 0$ and 4

Each block of 4 numbers will have same remainder sum. S_{Incc} $1^{5}+2^{5}+3^{5}+4^{5} \equiv 1+0+3$ ro = 4 = 0 mod 4,
Then The 25 6 locks will all have remainder 0. -- Entire remainder is O. 5. Prove 53^{103} + 103⁵³ =0 (enod 39)
11³³³ + 333'' = 0 (enod 7) $14: 53^{103} + 103^{55} = 0 (mod 39)$ $39 = 3.13$ $53 = 3.17 + 2 = 3.18 - 1$ $(03 = 34.3 + 1)$ \therefore 53 = - $(\text{mod } 3)$ 103 = 1 $(\text{mod } 3)$
... 53¹⁰³ = (-1)¹⁰³ (nod 3) 103⁵³ = 1⁵³ (mod 3) $53 = 1$ (mcd 13) $103 = -1$ (mcd 13)
 \therefore 53¹⁰³ = 1 (mod 13) 103^{53} = 7 (mcd 13) $53^{103}+103^{53} \equiv -1+1 \equiv 0 \pmod{3}$
53¹⁰³ + 103⁵³ = -1 +1 = 0 (mod 13) : BoM 3 and 13 divide sum, and
gcd(3,18) = 1, so by Corollary 2, p. 24,

 $3 - 13 = 39$ divides sum. $53^{103}+103^{55}=0$ (mod 39) $(11^{333} + 333''' \equiv 0 \pmod{7}$ $1/1 = 7.15 + 6$, $1/1 = 16.7 + -1$, $1/1 = -1$ (unod 7)
 $1/1 = 7.15$ $33 = (-1)^{343}$ (unod 7), or $1/1 = 335 = (-1)$ (mod 7) 333 = 47.7 +4, $\frac{333}{523} = 4$ (mod 7), 333 = 2² (mod 7)
 $\frac{333}{12} = 2^{2}$ (mod 7)
 $2^{4} = 64 = 9.7 + 1$ $\therefore 2^{6} = 1$ (mod 7)

and 222 = 6 -17 \therefore (2^{4) 17} = 2²²²
 $\therefore 2^{222} = 17$ (mod 7) or $2^{222} = 1$ (mod 7) $333''' \equiv ($ (mod 7) \therefore (11³³ + 333¹¹) = (-1+1) (and 7), or $111^{333} + 333$ $11 = 0$ mod ? $6. (a) 7 (5^{2n} + 3 \cdot 2^{5n-2}), n \ge 1$ $f: n = 1: 5^{2n} + 3 \cdot 2^{5n-2} = 25 + 3 \cdot 8 = 48 = 7^2$
 $9 + 1: 5^{2(n+1)} + 3 \cdot 2^{5(n+1)-2}$ $=5^{2n} \cdot 5^{2} + 3 \cdot 7^{5n-2} \cdot 7^{5}$

= 5^{2n} (3.7+4) + 3.2 $(4.7 + 4)$
= $3.7.5^{2n}$ + $4.7.3.2^{5n-2}$
+ 4 (5^{2n} + 3.2^{5n-2}) [1]
= 3.7.5²n + $4.7.3.2^{5n-2}$) [1] = $7(3.5^{2n}+4.3.2^{5n-2}+4.5)$ where XIS some integer since it was assumed That for n,
 $5^{z_n} + 3 \cdot 2^{z_{n-2}} = 7 \times$ as in Σ_1 : For n+1, number is divisible by ?. $\frac{1}{2}$ fructor all $n \ge 1$. σ_{1} $s^{-2}=2s\equiv 4$ knod?) : $s^{2n} \equiv 4^{n}$ (mod?) $2^{s} = 4 \pmod{7}$ $2^{s_1} = 4^n \pmod{7}$ For $n=1, 2^{5n}-4=4^{n}$. 4 $(mod 7)$ $\frac{1}{2^{5n-2}} \equiv 4^{n-1}$ (encel 7)
 $\therefore 3.2^{5n-2} \equiv 8.4^{n-1}$ (mod 7) $\sqrt{3}u + 4^h + 3 \cdot 4^{h-1} = 4 \cdot 4^{h-1} + 3 \cdot 4^{h-1}$
= 7-4ⁿ⁻¹ 5.5^{2n} +3.2⁵ⁿ⁻² = 7.4ⁿ⁻¹ = 0 (mod 7)

 $(6) 13 / (8^{n+2} + 4^{2n+1})$ $P+ : 3 \equiv 16 \pmod{13}$, $3 \equiv 4^2 \pmod{13}$ $\frac{1}{3^{n} \cdot 3^{n}} \equiv 4^{2n} (mod 13)$
 $3^{n} \cdot 5 \equiv 4^{2n} \frac{2}{3} (mod 13), 3^{n+2} \equiv 4^{2n} \frac{9}{3} (mod 13)$ $\frac{17.5^{412} + 4^{2n+1} \equiv 4^{2n} \cdot 9 + 4^{2n+1} (mod 13)}{\equiv 4^{2n} (9 + 4) (mod 13)}$
= $4^{2n} \cdot 13 (mod 13)$ \equiv 0 (mod 13) (c) $27/2^{5n+1}+5^{n+2}$ $Pf: 32 \equiv 5 \pmod{27}, 25 \equiv 5 \pmod{27}$ $2^{5n} \equiv 5^{n} (mod 27)$ $2^{5h} \cdot 2 \geq 2 \cdot 5^{h} \pmod{27}$ $.72^{5h+1} + 5^{h+2} = 2.5^{h} + 5^{h+2}$ (mod 27) $=5^{4}(2+25)$ (mod 27) $= 5^{-4} \cdot 27$ (mod 27) \equiv O (mod 27)

(d) 43 ($(4^{n+2}+7^{2n+1})$ $Pf: G \equiv 49 \pmod{43}$, $G \equiv 7^2 \pmod{43}$ $-64=7^{2n} (mod 48)$
 $6^{n+2}+7^{2n+1} \equiv 7^{2n} \cdot 56+7^{2n+1} (mod 43)$
 $= 7^{2n} \cdot 56+7^{2n+1} (mod 43)$
 $= 7^{2n} (36+7) (mod 43)$ 7.5 or $n \ge 1, (-13)^{n+1} \equiv (-13)^{n} + (-13)^{n-1}$ (mod 181) $A f: n = 1.613^{2} = 169$
 $169 + 13 = 182$
 $169 = (-18) + 1$ (mod 181)
 $K \Rightarrow K + 1 : \text{Suppose } (-13)^{K + 1} = (-13)^{K} + (-13)^{K - 1}$ (mod(191) $(-13)^{K+1}(-13)^{k}$ = $(-13)^{k}$ $(-13)^{k}$ $(-13)^{k-1}$ $(-13)^{k-1}$ \therefore (-13)^{K+2} = (-13)^{K+1} + (-13)^K (mod 181) T . True for all $n \ge 1$ κ (a) If a is odd, Then $a^2 \equiv 1 \pmod{\gamma}$ Pt: By D.v. Alg., a odd means

 $a = 4k + 1$ or $a = 4k+3$, some k. $- a² = 16k² + 8k + 1$ or $a² = 16k² + 24k + 9$
 $- a² - 1 = 8(2k² + k)$ or $a² - 1 = 8(k² + 3k + 1)$ \therefore $a^2 \equiv ($ (mud $8)$ (b) For any a, $a^3 \equiv 0, 1,$ or 6 (und 7) $Pf: B_y \wedge iv \wedge q, a=7k+r, o \leq r < 2$ $a=7k$: $a^{3}=(7k)^{3}$: $a^{3}=7.7k^{3}$, $a^{5}=0$ (mod 7) $a=7k+1$: $a^3=(7k+1)^3=7k^3+(7k^2+(7k+1))$ $2a + 3 = 72$ $3 + 9^2 = 6$ (mod 7) $a=2k+2: a^{3} = 7^{3}k^{3} + ()7^{2}k^{2} + 2+(7k2^{2} + 2^{3} + ... + 1)
\n. a^{3} = 1 (mod 7)$ $a=7k+3: a^{3}=7^{3}k^{3}+(7)k^{2}3+17k+27$ $43 - 6 = 727 + 124 + 33$ $-a^{3} \equiv 6 \pmod{7}$ $G = 7K+4: a³= 7³K³ + ... + 64
a³ - 7³K³ + ... + 63 = 7[7K³ + ... + 5]
a³ - 7K³ + ... + 63 = 7[7K³ + ... + 5]$ $= a^{3} \equiv (mod 7)$

 $Q = 7k+5$; $Q^3 = 7^3k^3+...+125=7k^4+115+6$
 $\therefore q^3-6 = 727k^5+...+173$ $6^3 \equiv 6 \pmod{7}$ $C = 7k+6$; $A = 7^{3}k^{3}+...+218 = 7^{3}k^{3}+...317+1$ $Q^{3-1} = 7\sqrt{7^{2}k^{3}+...+313}$
 $Q^{3} = (mod 7)$ (c) For any a_1 , $a_1^4 \equiv 0$ or 1 (mod 5) $Pf: By Air. A/g., a = Sk+r, o = rcs$ $a=5k: a^{4}=5.5^{3}k^{4}$, $= a^{4}=0$ (mod 5) $a=5k+1:a$ ⁴=5⁴ $k^4+(5k^3+1)s^2k^2+(5k+1)s^2$ $-24-52$ 3 \therefore $G4 \equiv (mod 5)$ $a=5k+2$: $a^{4}=5^{4}k^{4}+...+16=5^{4}k^{4}+...+15+7$
 $a^{4}-1=5\sum 5^{3}k^{4}+...3$ $G4 \equiv (mod 5)$ $4 = 5k+3$: $a^{4}=5^{4}k^{4}+...+3^{4}=5^{4}k^{4}+5/(s+1)$ $-q^{4} \equiv (mod 5)$

 $a = 5k+4: a = 5k + ... + 4k = 5k + ... 255 + 1$
 $= 64 = 1$ (mod 5) (d) If a is not divisible by 2 or 3 , Then
a² = 1 (mod 24) $Pf: By AirAlg, a=24k+r, 0 \le r < 24$
Since a is not divisible $Sy2$,
r mutbe odd. Since a is not divisible by 3,
 S_{encc} a is not divisible by 3, \therefore $G = (24k+r)^{-1} = 24k^{2} + 48kr + r^{2}$ $r=|: r=|: Lef c=0$ $Y=5: r^2=25=24+1... 200=1$ $v=7$: $r^2=49=2.24+1$: $CefC=2$ $r=(1-r^2/2)^25.24+1.266c=5$ $r=(3: r²/(69=7.24+1))$ $Let c=7$ $r=(7: r²=285=12.24+1... 2cT C=12)$ $r=(9: r²=3C/=(5-24+1) - 2c² C=75$ \therefore $a^2 = 24^2k^2 + 48kr + 24 \cdot C + 1$ = 24 $[24k^{2} + 2kr + c]+$ $- a^2 \equiv ($ (mod 24)

9. If ρ is prime s.t. $n < \rho < 2n$, then $\binom{2n}{b}\equiv O(mod\rho)$ $f: \begin{pmatrix} 2n \\ n \end{pmatrix} = \frac{(-2.3 \cdot n (n+1) \cdot (2n))}{n! n!} = \frac{(n+1) \cdot (2n)}{n!}$ $\therefore n! \binom{2n}{n} = (n+1) \cdots (2n)$ Since $n < \rho < 2n$, ρ must be one of
The factors of $(n+1)\cdots(2n)$ $\therefore n! {2n \choose n} = Kp$ Since p > n, it is greater Than every
term of n!, it is not a member of The
prime factorization of each member. $- q c d (n!) p$ = 1 By Enclid's lemma, p (2n) \therefore $\binom{2n}{n} \equiv O \pmod{p}$

10. If $\{a_1, a_1, a_2\}$ is a complete set of residues mod n
and $gcd(a_1 n) = (The n \{a_1, a_2, a_3\})$ is a
complete set of residues mod n. $N+$: Consider ag. and ag., $i \neq j$, $i = i, j \leq n$ If aa and aa are congruent mod n,
Then aa - aa - Kn, some K. : a (a;-a;) = Kn Since and $(a, a) = 1$, Then by Euclid's lemma, $a_{i} \neq a_{i}$ $\frac{\beta y}{\beta y}$ Theorem lat top, $\{aq_1, q_4, \}$ is a 11. Show O_1 , 1, 2, 2^2 , 2^3 is a complete set of
residues mod 1^1 , but that O_1 , 1^2 , 2^2 , \ldots , 10² is not. $Pf: Since $gcd(1, 2^n) = 1$ for $0 \le n \le 9$, Then
\n $2^n \neq 0$ mod 11 for $0 \le n \le 9$.
\n $Im{100} = 2^n$ and $2^n = 1 \le n \le 9$, $r \neq 5$.
\n $Im{100} = 5 \times 10^{-10}$ and $2^{5} = 2^{n} = 2^{n} = 2^{n} = 1$.
\n $Im{100} = 2^{5} = 2^{n} = 2^{n} = 2$$

for $0 \leq s-r \leq 8$, Then There is no $k>1$
s.t. $2^{s}-2^{r} = 1/k$. $2^{s} \neq 2^{r}$ mod 11
 $-0,1,2,2^{r}$, 2^{n} is a complete set of Another proof (more obvious). $200k$ at remainders from $Nv.$ Alg.
 $0: r=0$ $2^{4}:5$ $2^{8}:3$
 $1: r=1$ $2^{5}:10$ $2^{7}:6$
 $2: r=2$ $2:9$
 $2^{2}: r=4$ $2:7$ $2:7$ $2^{3}: r = 8$: Remainders are in 1-to-1 correspondence to {0,1,...,9,10} and There ford mod μ . 8^{2} = 9 4^{4} ; 5 \bigwedge : \bigcirc $5^2:3$ ζ^2 : 4 $\frac{1}{2}$: $\frac{1}{2}$ 10^{2} z^2 , 4 6^{2} ; 3 3^{2} ; 9 $7 - 5$ $\frac{1}{x}$ not q $1-fo-1$ correspondence \therefore not g complete set of tesidues (Lemma at to

 $12(a)$ If gcd $(a, n) = 1,$ Then $c, c+a, c+2a, ..., c+(n-1)a$ forms a
complete set of residues mod n. Pt: Consider c+ ra and c+ sa, r≠s, $S = C + S a - (c + r a) = (S - r)a$ $s-r < n$ since $s \le n-1$, $r \le n-1$
 $\therefore n$ K (s-r). Since $gcd(G, n) = 1$

Then Pack is no integer, K, s.t. $(s-r)a = nK$. : C+sa = C+ra, so The above
set is a complete set of residues. (6) Any n consecutive integers form a
complete set of residues mod n. Pf : From (a) a bove, let $C =$ first of
The consecutive list, let $a = 1$ $=$ Thz list in (a) Us C_1 C + 1, C + 2, ..., C + $(h-1)$

(c) The product of any set of n consecutive Pf: B, (6) The ret of n consecutive integers
forms a complete set of residues
anod n. = One of The members is congruent to 0 mod n, which
means one member is divisible by n.
The entire product is divisible by n. 13. If $a \equiv 6 \pmod{n_1}$, $a \equiv 6 \pmod{n_2}$, then $a \equiv 6 \pmod{n_1}$,
where $n = (cm(n_1, n_2))$ Pf: Let K,, Kz be The integers such That $a - b = k_1 n_1$ and $a - b = k_2 n_2$ Let $d = gcd(n_1, n_2)$. $\therefore n_1 = d_1$, some $r_1 = \frac{n_1}{d_r}$ \therefore $a - b = K_2 n_2 = K_2 n_2 (\frac{n_1}{dr}) = K_2 n_1 n_2$ But n_1n_2 = lcm (n_1, n_2) (Th 28, p. 30) -1 $a-6 = K_2$ $lcm(n_1, n_2)$

Is Fan integer? $S_{1}nc_{1}$ $a-b = K_{1}n_{1} = K_{2}n_{2}$ Then k_1 dr = k_2 ds, so k_1 r = k_2 s Since r and s are relatively prime, (see proof of Corollary 1, $\sqrt{25}$) by Euclid's (uning, $r(K_{2}$, so K_{2} is an integer. 14 Show That $a^k \equiv b^k \pmod{n}$ and $K \equiv j \pmod{n}$
need not imply $a^j \equiv b^j \pmod{n}$ Pf ; $2^{2} \equiv 3^{2}$ (mod 5) since $4 \equiv 5$ and 5 $2 \equiv 7$ (mocf 5) $2^{7} \equiv 3^{7} (mod 5)^{7}$ 2^{7} = 128, 3^{7} = 2187, 2187-128 = 2059,
20 2^{7} = 3 15. If a is odd, Then for $n \ge 1$, $a^{2^n} \equiv 1 \pmod{2^{n+2}}$ $f: n=1: iS \times Z^2 \equiv / (mod 2^3)?$ Since a is odd, $a = 4r+1$ or $a = 4r+3$ \therefore $q^{z} = /6r^{z} + 8r + 1$ or $q^{z} /6r^{z} + 24r + 9$ \therefore $a^{2}-1 = (6r^{2}+8r = 8(2r^{2}+r))$, or $a^{2}-1 = (6r^{2} + 24r + 8 = 8(2r^{2} + 3r + 1))$

 \therefore $a^2 \equiv ($ (mud $8)$ $K=7K+1$: Suppose $a^{2^{k}} \equiv 1 \pmod{2^{K+2}}$
 $a^{2^{k}}-1=(2^{K+2})r,$ Some r $a^{2^{K+1}}-1 = a^{2 \cdot 2^{K}}-1 = (a^{2^{K}})^{2} - 1$ $=(a^{2^{k}}-1)(a^{2^{k}}+1)$ = $(a^{2^{k}+1})(2^{k+2})r$

= $(2^{k+2}r+2)(2^{k+2}r)$

= $2^{2k+4}r^{2} + 2 \cdot 2^{k+2}r$

= $2^{2k+4}r^{2} + 2^{k+5}r$

= $2^{k+3}(2^{k+1}r^{2} + r)$ = $2^{(k+1)+2}S$, where $s = 2^{k+1}r^{2} + r^{2}$.. When true for K, true for K+1 16. (a) S how $89/2^{44}$ -1 Edea: Look at multiple of 89 to see of

 $2^{F}\equiv(-1)$ mel 5 $Z^5 = 2^5$ (-11) = | mod 89 $2^{5} = 32$
 $2^{6} = 64$
 $2^{7} = 128$ $2'' = 2048$ $12-89 = 1068$ $23 - 86 = 2047$ \therefore $2^{11} \equiv (mod 85)$
 \therefore $2^{44} = 14 (mod 85)$ Anoter way: $Z^{\mathcal{F}} = (-11)(mod 89)$ (3.89 = 267)
 $\therefore Z^3 \cdot Z^{\mathcal{F}} = Z^5 \cdot (-11) (mod 89)$, and $Z^3(-11) = 1 (mod 89)$
 $\therefore Z^1 = (mod 89)$, $\therefore Z^{44} = 1 (mod 89)$ $(6) 97 |248-1$ 97, is close to 100, so look at pouvers of 2 $\frac{Closs}{12}$ to $100^{\frac{1}{5}}$. We find That 21.97 = 2037 7.2^{12} = 40 } 6 = 2.11 (mod 97) - 2^{48} = $2^{4}\cdot 11^{4}$ (mod 97)
But $2^{4}\cdot 11^{4}$ (4.121)² = (484)² and $5.97 = 485$ \therefore 484 = (-1) (nod 97) : $(y-121) = (-1) (mod 97)$
= $2^4 + 114 = (4 \cdot 121)^2 = 1 (mod 97)$ $-248 = 1 (mod 97)$

17. If $ab \equiv cd \pmod{n}$, $b \equiv d \pmod{n}$, $gcd (6, n) = 1$,
Then $a \equiv c \pmod{n}$ $Pf:$ Let $a\,b$ -cd = rn, some r $6-d = 5n$, some s $\frac{1}{2}$ $6 - 5n = d$ \therefore ab-cd = ab-c(b-sn) $\frac{1}{2}$ $r n = (a-c) b + c s n$ $r_{4-c5\eta} = (a-c)$ $(r-cs)$ n = $(a-c)$ \therefore since god (n, 6)=1, Then by Euclids lemma,
n ((a-c) \therefore a = c (mod'n) Alternatively, $S \equiv d \pmod{n} \Rightarrow c \equiv c d \pmod{n}$
 \therefore since $a b \equiv c d \pmod{n}$, Ren $a b \equiv c b \pmod{n}$

Since $gcd(6, n) = 1$, Ren by Corollary 1, p. Co,
 $a \equiv c \pmod{n}$. $19. \overline{LF} a \equiv 5 (mod n_1) and a \equiv c (mod n_2),$
 $6 \equiv c (mod n_1, and n_2)$
 $8 \equiv c (mod n_1, and n_2)$ $Pf: a-6=k,n_1$, some K_1 . Since $n|n_1$, Then
 $n_1 = rn_1$, some r_1 . $a-6 = K_1rn_1$
 $a=6 (mod n)$

 $Similarly, since n|u_2$ Then $a \equiv c \pmod{n}$ $=$ By Theorem 4.2 (c), $6 \equiv c \pmod{n}$.